Analysis of Wind Turbine Loading during Short-term Overproduction

Müfit Altin, Athanasios Barlas, Anca D. Hansen

29/06/2017
Outline

• What is Synthetic Inertia?

• Short-term Overproduction for Synthetic Inertia

• Impact of Short-term Overproduction on Wind Turbine Loading

• Conclusion
Background

Frequency is the indicator for the balance between generation and consumption.
What is Synthetic Inertia?

‘Synthetic Inertia’ means the facility provided by a power park module or HVDC system to replace the effect of inertia of a synchronous power generating module to a prescribed level of performance.

(ENTSO-E Network Code for Requirements for Grid Connection Applicable to all Generators)
Short-term Overproduction for Synthetic Inertia

ΔP_{ov} is the overproduction active power step.

ΔP_{rec} is the drop of the power.

T_{ov} is the overproduction period.

T_{rec} is known also as recovery period.
Dynamic Electrical Model

Wind speed v to Available power P_{avail} to Wind farm controller

Pitch controller θ to Aerodynamic P_{aero}

Aerodynamic P_{aero} to Mechanical model P_{meas}

Wind speed v to Pitch controller θ

P, Q meas. P_{meas} to MPPT table P_{opt}

Wind farm controller P_{meas} to Selection mode $P_{imposed}$

Selection mode P_{ref} to P control iP_{cmd}

P control Q_{ref} to Q control iQ_{cmd}

Q control Q_{meas} to Static generator ω_{gen_filt}

Available power P_{meas} to P_{pref}

Filter ω_{rot}

ω_{gen_filt}

MPPT P_{opt}

Selection mode $P_{imposed}$

P control iP_{cmd}

Q control iQ_{cmd}

Static generator ω_{rot}

LVRT

Wind farm controller P_{meas} to Selection mode $P_{imposed}$

Selection mode P_{ref} to P control iP_{cmd}

P control Q_{ref} to Q control iQ_{cmd}

Q control Q_{meas} to Static generator ω_{gen_filt}

Filter ω_{rot}

MPPT P_{opt}

Selection mode $P_{imposed}$

P control iP_{cmd}

Q control iQ_{cmd}

Static generator ω_{rot}

LVRT

Wind farm controller P_{meas} to Selection mode $P_{imposed}$

Selection mode P_{ref} to P control iP_{cmd}

P control Q_{ref} to Q control iQ_{cmd}

Q control Q_{meas} to Static generator ω_{gen_filt}

Filter ω_{rot}

MPPT P_{opt}

Selection mode $P_{imposed}$

P control iP_{cmd}

Q control iQ_{cmd}

Static generator ω_{rot}

LVRT

Wind farm controller P_{meas} to Selection mode $P_{imposed}$

Selection mode P_{ref} to P control iP_{cmd}

P control Q_{ref} to Q control iQ_{cmd}

Q control Q_{meas} to Static generator ω_{gen_filt}

Filter ω_{rot}

MPPT P_{opt}

Selection mode $P_{imposed}$

P control iP_{cmd}

Q control iQ_{cmd}

Static generator ω_{rot}

LVRT
Short-term Overproduction Performance

7 m/s

11 m/s
Short-term Overproduction Performance

![Graph showing mechanical and electrical power versus generator speed]

- mech. power for 0.93pu wind speed
- mech. power for 0.6pu wind speed
- elec. power (MPPT table)
Impact of Short-term Overproduction on Wind Turbine Loading

Electrical Model

HAWC2 Aeroelastic Tool
(Horizontal Axis Wind turbine simulation Code 2nd generation)
Impact of Short-term Overproduction on Wind Turbine Loading

Wind Speed = 7 m/s

- Initial power
- $\Delta P_{ov} = 2.5\% - T_{ov} = 30s$
- $\Delta P_{ov} = 10\% - T_{ov} = 9s$
- $\Delta P_{ov} = 30\% - T_{ov} = 4s$

Load channel [-]
Baseline
$\Delta P_{ov} = 2.5\% - T_{ov} = 30s$
$\Delta P_{ov} = 10\% - T_{ov} = 9s$
$\Delta P_{ov} = 30\% - T_{ov} = 4s$
Impact of Short-term Overproduction on Wind Turbine Loading

Wind Speed 7 m/s

Impact of short-term overproduction on wind turbine loading:
- Initial power
- $\Delta P_{ov} = 20\%$ - $T_{ov} = 18s$
- $\Delta P_{ov} = 40\%$ - $T_{ov} = 9s$
- $\Delta P_{ov} = 100\%$ - $T_{ov} = 4s$

Graph showing generator power and turbine load over time.

DTU Wind Energy, Technical University of Denmark

29 June 2017
Conclusion

• Synthetic inertia can be a future requirement from wind power plants.

• Ramp rates of active power control have a crucial impact on wind turbine loading (also on power system frequency profile)

• Grid code requirements can be tested with the same approach.

• Verification of electrical model with aerodynamic (HAWC2) model is needed in terms of active power and rotational speed deviations.